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ABSTRACT: This paper presents the optimal power flow solutions under variable load conditions. In this 

article we present the recent trend towards non-deterministic (random) search techniques and hybrid methods 

for OPF and give the conclusions. These methods have become popular because they have a theoretical 

advantage over the deterministic methods with respect to handling of non convexity, dynamics, and discrete 

variables. Present commercial OPF programs can solve very large and complex power systems optimization 

problems in a relatively less time. In recent years many different solution methods have been suggested to solve 

OPF problems. The paper  contributes a comprehensive discussion of specific optimization techniques that can 

be applied to OPF Solution methodology. 
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I. INTRODUCTION 
A progressive increase of the load and the 

deregulation of the electric energy Systems  have 

added to the complexity of determining adequate 

solutions for the electrical power system steady state 

operation problem. Therefore the study of voltage 

collapse and Optimal Power Flow Solutions acquires 

a great significance and there is a need for 

methodologies which are able to simultaneously 

analyze these two aspects to indicate the  behavior of 

power systems, being operated  near the maximum 

loadability limit. Different methodologies were 

proposed to calculate the maximum loadability limit 

of power systems. The approach presented in [1] 

proposes the determination of this limit through the 

computation of the steady state multiple solutions. In 

reference [2], sensitivity relationships between the 

power system variables are used to calculate the 

critical load. The Singular Value Decomposition of 

the conventional Newton–Raphson Jacobian matrix 

was also applied [3]. The parameterization of the 

steady state power system equations was also used to 

formulate the problem of maximum loadability [4], 

[5]. These two last works applied the continuation 

method to track the load flow solution for an 

increasing system demand. 

The OPF algorithms have been existing since 

sixties and have been extensively used to asses the 

economic aspect of power system operation. Some of 

these algorithms apply parametric optimization 

techniques, some use  different versions of the 

Continuation method [6]–[12]. Some of these 

methodologies are based on the Newton OPF method 

[13]. The adequate combination of the Continuation 

methods with the optimization algorithms can 

provide  a high potential tool for power system 

studies allowing  the development of robust methods 

for the solution of the OPF problem .Recently, the 

performance of Interior Point (IP) algorithms in 

solving linear programming problems has led to 

many applications of these algorithms to the 

nonlinear OPF problem [15]–[18]. The efficiency of 

finding the optimal solution and the effective way of 

handling the inequality constraints have been claimed 

as its main features. Some of these works proposed 

the use of an OPF algorithm to compute the point of 

maximum loadability of the power systems via 

nonlinear versions of Interior Points methods [17], 

[18].  The use of optimization algorithms for the 

study of heavily loaded systems allows the 

representation of all the operational limits and, 

depending on the OPF formulation, the adoption of  

an criterion to be optimized [14], [17], [18]. The not 

well known steady state behavior of power systems 

being optimally operated under heavy load can be, in 

this way, better analyzed. 

A research work on a methodology that  

combines the Continuation method with a nonlinear 

version of the Interior Point algorithm can be worked 

upon where the  first will provide a sequence of 

estimates for the solution of the Karush–Kuhn–

Tucker (KKT) conditions from a base case to the 

point of maximum loadability. Each solution of this 

sequence  can be  determined through the OPF 

Interior Point algorithm. This combination may 

allows the optimal tracking of the load growth, even 

in the neighborhood of the feasibility limit, where the 

Newton’s solver is bound to diverge due to the ill-

conditioning of the Jacobian of the KKT conditions 

[14].  
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II. THE MAXIMUM LOADABILITY 

PROBLEM 
The Solving the maximum loadability problem 

gives the maximum real and reactive power demand 

that a power system is able to bear, while operating at 

a stable point (i.e., one which does not change 

considerably for small increments on the systems 

parameters such as load or operational limits), that 

respects a set of pre-defined operational limits. A 

steady state formulation of this problem can be made 

in terms of the load flow system of equations. The 

parameterization of the bus loads gives a modified set 

of power balance equations, in which the 

load increase direction is explicitly represented:   

                               (1) 

Where  is the load parameter g(x)  is the set of 

power flow equations and d is the pre-specified load 

increase direction. 

In subject to this case, the calculation of the 

maximum loadability of power systems will consists 

of solving (1) to find the complex bus voltages 

corresponding to the maximum value of  .For an 

optimally operated system the maximum loadability 

problem is to find the maximum value of for which 

problem p()  

 

Min  f(x)                                                          (2) 

 

subject to    

 

g(x, ) = 0                                                       (3) 

h(x, ) = 0                                                       (4) 

 

has feasible solutions the vector of decision variables 

P(), is composed of the active power generations, 

bus voltage magnitudes and angles, transformer tap 

settings and phase shifter angles. The objective 

function, f(x) , can represent the power generation 

cost, the transmission losses, the voltage deviation 

from a pre-specified voltage level or any combination 

of these three indices. The set of inequality 

constraints, h(x, ), which comprises the upper and 

lower limits of the decision variables and functional 

inequalities such as the limits on the generated 

reactive power and line flows, can also be dependent 

on the bus loads: 

 

h(x, ) = h(x) + d1                                                                           (5) 

 

where d1 represents a pre-specified load increase 

direction. 

The solution P() can be tracked for increasing  

until  the maximum loadability limit is reached. The 

difficulties to solve this nonlinear optimization 

problem are well known, and presently most of the 

algorithms which were successful in its resolution are 

based on the solution of the its pure or modified KKT 

conditions by linear approximations (Newton 

method). However, it can be shown that near the 

feasibility limit the Jacobian of the KKT conditions 

of  P()is ill-conditioned [14] which may causes an 

additional difficulty in the tracking of the solution of 

P()up to the maximum value of  . Thus the analysis 

of the OPF behavior near the maximum loadability 

limit must be done with algorithms which can 

diminish the problem of ill conditioning observed 

near such limit. This is the main motivation of the  

research. 

 

III. THE PROPOSED APPROACH 
The  application of the Interior Point algorithms 

to solve problem P() consists basically of: a) 

converting the inequality constraints in equality 

constraints, through nonnegative slack variables; and 

b) adding a logarithmic barrier function to the 

objective function, to preserve the non negativity 

condition of the slack variables. The modified 

parameterized 

optimization problem PM() is: 

 

           (6) 

subject to    

 

  g(x, ) = 0                                           (7) 

               h(x, ) + s = 0                                      (8) 

 

where  

 

µ ≥  0  is the logarithmic barrier 

s  >  0 is the vector of slack variables 

p         is the number of inequality 

constraints 

 

The interior point OPF model (6)–(8) is, a 

parameterized model with two distinct parameters  µ 

and  . The proposed methodology will consists of  

changing each of these parameters at a time: in the 

predictor step,   will be increased so that a new load 

level is considered; in the corrector step,  µ will be 

decreased so that, at the end of the corrector’s 

iterations, the original OPF problem is solved. We 

are analyzing the behavior of the OPF solutions for 

increasing  ,  while the optimal solution will be 

tracked for varying   . Nevertheless, Interior Point 

methods can also be interpreted as a special class of 

parametric optimization methods [19]. 

 

IV. SOME SUPPLEMENTRY STUDIES 
An additional information regarding the behavior 

of the system near the collapse point is provided by 

the paramererized optimization model.  The optimal 

operating point and the operational limit have been 
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well considered . This limit plays an important role in 

deciding the maximum variation in voltage and the 

sensitivities that can be calculated with the 

parameterized model. When limits are considered, 

the optimal solution trajectories  varies continuously 

with  only in those intervals where no new limit 

becomes active  and a “break-point”   appears upon 

the activation of a new inequality constraint. As a 

consequence, indices based on the tangent vector and 

also some sensitivities which are a by product of the 

approach, are valid only for small intervals of 

variation of where no new limit is reached. 

V. RESULT AND CONCLUSION 
The results have been obtained keeping in mind 

the three categories 

i) Optimal power flow behavior near the 

loadability limit;  

ii) Efficiency Analysis of the  proposed 

methodology and  

iii) Analysis of the critical bus indices and the 

sensitivity of the maximum load with 

respect to reactive power injections.  

 
Figure 1 CPF and Prediction –Curve  for three bus with load at 5 p.u. 

 

 
Figure 2  CPF and Prediction –Curve  for  four  bus with load at 5 p.u. 
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Figure 3 CPF and Prediction –Curve  for five bus with load at 5 p.u. 

 

 
Figure 4  CPF and Prediction –Curve  for six  bus with load at 5 p.u. 

no of bus = 6              loadvarloc =       6 

 

For a specific range of the load parameter  a  

parameterized OPF algorithm  is worked upon which 

tracks the system load variation  and this  algorithm 

uses continuation method on a primal–dual interior 

point method. 

Some insight on the behavior of power systems 

being optimally operated near a feasibility limit is 

being provided implying parameterization to allow 

the resolution of the OPF problem for critical loading 

conditions. 

Critical variables and operational indices have 

been worked upon to provide the  Sensitivity details 

of the system.  
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